Skip to main content English

Detail

Conrad Merkle
Conrad Merkle, PhD

Center for Medical Physics and Biomedical Engineering
Position: Research Associate (Postdoc)

ORCID: 0000-0002-2465-4100
T +43 1 40400 39345
conrad.merkle@meduniwien.ac.at

Keywords

Hemodynamics; Neuroimaging; Ophthalmology; Tomography, Optical Coherence

Research group(s)

Research interests

My main research interests are focused on the development and application of optical imaging techniques, specifically optical coherence tomography (OCT), to study biological systems for preclinical or clinical research. In particular, I am interested in the role of microvascular hemodynamics in the progression of various brain and eye diseases and the relationships between tissue optical properties and disease state.

Techniques, methods & infrastructure

So far, I have primarily used Optical Coherence Tomography (OCT) for brain and eye imaging in preclinical models. In addition to traditional OCT methods, I have also developed new methods based on spectral and exogenous contrast. Going forward, I aim to develop new system designs to expand the capabilities of OCT technology.

Grants

  • Total Optical Coherence Characterization for Automated Tumor Analysis – TOCCATA (2024)
    Source of Funding: EU, ERC Starting Grant
    Principal Investigator
  • Improved Biomarker Detection for Eye Disease with CaSE-OCT (2022)
    Source of Funding: FWF (Austrian Science Fund), Stand-Alone Project
    Principal Investigator

Selected publications

  1. Merkle, C.W. et al., 2021. High-resolution, depth-resolved vascular leakage measurements using contrast-enhanced, correlation-gated optical coherence tomography in mice. Biomedical Optics Express, 12(4), p.1774. Available at: http://dx.doi.org/10.1364/BOE.415227.
  2. Merkle, C.W. et al., 2020. Indocyanine green provides absorption and spectral contrast for optical coherence tomography at 840  nm in vivo. Optics Letters, 45(8), p.2359. Available at: http://dx.doi.org/10.1364/OL.380051.
  3. Merkle, C.W. et al., 2019. Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo. NeuroImage, 202, p.116067. Available at: http://dx.doi.org/10.1016/j.neuroimage.2019.116067.
  4. Merkle, C.W. et al., 2018. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo. Optics Letters, 43(2), p.198. Available at: http://dx.doi.org/10.1364/OL.43.000198.
  5. Merkle, C.W. & Srinivasan, V.J., 2016. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. NeuroImage, 125, pp.350–362. Available at: http://dx.doi.org/10.1016/j.neuroimage.2015.10.017.