Skip to main content English

Detail

Laszlo Papp
Laszlo Papp, PhD

Center for Medical Physics and Biomedical Engineering
Position: Research Associate (Postdoc)

ORCID: 0000-0002-9049-9989
T +43 1 40400 39224
laszlo.papp@meduniwien.ac.at

Further Information

Keywords

Artificial Intelligence; Data Mining; Image Interpretation, Computer-Assisted; Image Processing, Computer-Assisted

Research group(s)

Research interests

Quantum computing, machine learning, image processing, personalized medicine, tumour characterization

Techniques, methods & infrastructure

Techniques, Methods:

  • Quantum machine learning
  • Quantum image analysis
  • Quantum simulators and NISQs
  • In vivo feature engineering
  • Radiomics, holomics
  • Ensemble learning

Infrastructure:

  • Quantum simulation HPC (256 CPU cores, 7 TByre RAM)

Grants

  • Quantum Image Analysis (2022)
    Source of Funding: Medical University of Vienna, Focus M Grant Scheme
    Principal Investigator
  • Quantum Image Analysis (QIA) (2022)
    Source of Funding: Medical University of Vienna, Focus-M
    Principal Investigator
  • Foundations of a Quantum Computational Lab at the CMPBME (2019)
    Source of Funding: Medical University of Vienna, Focus XL Grant Scheme
    Principal Investigator

Selected publications

  1. Grahovac, M. et al. (2023) ‘Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts’, European Journal of Nuclear Medicine and Molecular Imaging [Preprint]. Available at: http://dx.doi.org/10.1007/s00259-023-06127-1.
  2. Krajnc, D. et al. (2022) ‘Automated data preparation for in vivo tumor characterization with machine learning’, Frontiers in Oncology, 12. Available at: http://dx.doi.org/10.3389/fonc.2022.1017911.
  3. Moradi, S. et al. (2022) ‘Clinical data classification with noisy intermediate scale quantum computers’, Scientific Reports, 12(1). Available at: http://dx.doi.org/10.1038/s41598-022-05971-9.
  4. Papp, L. et al. (2020) ‘Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI’, European Journal of Nuclear Medicine and Molecular Imaging, 48(6), pp. 1795–1805. Available at: http://dx.doi.org/10.1007/s00259-020-05140-y.
  5. Papp, L. et al. (2018) ‘Optimized Feature Extraction for Radiomics Analysis of 18F-FDG PET Imaging’, Journal of Nuclear Medicine, 60(6), pp. 864–872. Available at: http://dx.doi.org/10.2967/jnumed.118.217612.