Keywords
Artificial Intelligence; Data Mining; Image Interpretation, Computer-Assisted; Image Processing, Computer-Assisted
Research group(s)
- Applied Quantum Computing Group
Head: Laszlo Papp
Research Area: Quantum imaging, radiomics and AI; Classic-Quantum adoption;
Members:
Research interests
Quantum computing, machine learning, image processing, personalized medicine, tumour characterization
Techniques, methods & infrastructure
Techniques, Methods:
- Quantum machine learning and deep learning
- Quantum image analysis
- Quantum simulators and NISQs
- Biomorphic computing
- In vivo feature engineering
- Radiomics, holomics
- Ensemble learning
Infrastructure:
- Quantum simulation HPC (256 CPU cores, 7 TByre RAM)
Grants
- Quantum Image Analysis (2022)
Source of Funding: Medical University of Vienna, Focus M Grant Scheme
Principal Investigator - Quantum Image Analysis (QIA) (2022)
Source of Funding: Medical University of Vienna, Focus-M
Principal Investigator - Foundations of a Quantum Computational Lab at the CMPBME (2019)
Source of Funding: Medical University of Vienna, Focus XL Grant Scheme
Principal Investigator
Selected publications
- Moradi, S. et al. (2023) ‘Error mitigation enables PET radiomic cancer characterization on quantum computers’, European Journal of Nuclear Medicine and Molecular Imaging [Preprint]. Available at: http://dx.doi.org/10.1007/s00259-023-06362-6.
- Papp, L. et al. (2023) ‘DEBI-NN: Distance-encoding biomorphic-informational neural networks for minimizing the number of trainable parameters’, Neural Networks, 167, pp. 517–532. Available at: https://doi.org/10.1016/j.neunet.2023.08.026.
- Grahovac, M. et al. (2023) ‘Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts’, European Journal of Nuclear Medicine and Molecular Imaging, 50(6), pp. 1607–1620. Available at: https://doi.org/10.1007/s00259-023-06127-1.
- Moradi, S. et al. (2022) ‘Clinical data classification with noisy intermediate scale quantum computers’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-05971-9.
- Papp, L. et al. (2020) ‘Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI’, European Journal of Nuclear Medicine and Molecular Imaging, 48(6), pp. 1795–1805. Available at: https://doi.org/10.1007/s00259-020-05140-y.