Skip to main content


Francesco Moscato
Assoc. Prof. Dipl.-Ing. Francesco Moscato, PhD

Center for Medical Physics and Biomedical Engineering
Position: Associate Professor

ORCID: 0000-0003-0279-6615
T +43 1 40400 39830


Artificial Organs; Biomedical Engineering; Cardiovascular System; Medical 3D-Printing; Models, Cardiovascular; Monte Carlo Method; Pattern Recognition, Automated; Signal Processing, Computer-Assisted

Research group(s)

  • Additve Manufacturing for Medical Research - M3dRES
  • Cardiovascular Dynamics and Artificial Organs
  • Ludwig Boltzmann Cluster for Cardiovascular Research

Research interests

My research focuses on two main areas: medical 3d-printing and cardiovascular system dynamics. On the one hand, my research adresses the investigation of how 3d-printing could improve surgical and interventional procedures, medical device prototyping, tissue engineering and medical education. On the other hand, my efforts are devoted towards research and development of methods and devices to improve diagnostics and provide support to a range of cardiovascular pathologies.

Techniques, methods & infrastructure

Additive manufacruting (aka 3d-printing), mechanical and hemodynamic in-vitro and ex-vivo test setups, mathematical modeling (including Monte Carlo simulations), system identification and control (inluding recursive Bayesian estimation and digital control), biosignal processing (primarily time-series analysis).


  • Additive Manufacturing for M3dical RESearch - M3dRES (2017)
    Source of Funding: FFG (Austrian Research Promotion Agency), F&E-Infrastrukturförderung
    Principal Investigator
  • Continuous Out-of-hospital Monitoring of Rotary Blood Pump Patients (2014)
    Source of Funding: FWF (Austrian Science Fund), Programme Clinical Research (KLIF)
    Principal Investigator

Selected publications

  1. Zimpfer, D. et al., 2016. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. European Journal of Cardio-Thoracic Surgery, 50(5), pp.839-848. Available at:
  2. Granegger, M. et al., 2016. Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients. IEEE Transactions on Biomedical Engineering, 63(6), pp.1201-1207. Available at:
  3. Moscato, F. et al., 2013. Continuous Monitoring of Cardiac Rhythms in Left Ventricular Assist Device Patients. Artificial Organs, 38(3), pp.191-198. Available at:
  4. Granegger, M. et al., 2013. Investigation of Hemodynamics in the Assisted Isolated Porcine Heart. The International Journal of Artificial Organs, 36(12), pp.878-886. Available at:
  5. Moscato, F. et al., 2013. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: A computer-simulation study. The Journal of Thoracic and Cardiovascular Surgery, 145(5), pp.1352-1358. Available at: