Skip to main content English

Detail

Roxane Licandro
Dipl.-Ing. Dr.techn Roxane Licandro, BScHead of Early Life Image Analysis (ELIA) Group

Department of Biomedical Imaging and Image-guided Therapy
Position: Research Associate (Postdoc)

ORCID: 0000-0001-9066-4473
T +43 1 40400 73723
roxane.licandro@meduniwien.ac.at

Further Information

Keywords

Artificial Intelligence; Pattern Recognition, Automated; Spatio-Temporal Analysis

Research group(s)

Research interests

My main research focus lies on finding new ways to computationally model and predict dynamic processes in space and over time, especially in the field of fetal and paediatric brain development, functional brain networks and plasticity, sudden infant death syndrom (SIDS) and postmortem brain analysis, pediatric and fetal brain development, functional connectivity and plasticity and statistical pattern analysis for children cancer research.

Techniques, methods & infrastructure

  • Diffeomorphic registration
  • Machine learning and statistical pattern analysis
  • Spatio temporal modelling and anomaly prediction
  • Medical Computer vision
  • Uncertainty and Interpretable AI
  • High resolution reconstruction and motion correction
  • Shape and Surface-based Analysis

Grants

Selected publications

  1. Taymourtash, A. et al. (2025) ‘Measuring the effects of motion corruption in fetal <scp>fMRI</scp>’, Human Brain Mapping, 46(2). Available at: https://doi.org/10.1002/hbm.26806.
  2. Gutwein, S. et al. (2024) ‘FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection’, Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, pp. 23–33. Available at: https://doi.org/10.1007/978-3-031-73158-7_3.
  3. Payette, K. et al. (2024) ‘Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results’, IEEE Transactions on Medical Imaging, pp. 1–1. Available at: https://doi.org/10.1109/tmi.2024.3485554.
  4. R. Licandro and T. Schlegl, M. Reiter, M. Diem, M. Dworzak, A. Schumich, G. Langs, M. Kampel, 2018. WGAN Latent Space Embeddings for Blast Identification in Childhood Acute Myeloid Leukaemia. 2018 24th International Conference on Pattern Recognition (ICPR). Available at: http://dx.doi.org/10.1109/ICPR.2018.8546177.
  5. Sobotka, D. et al. (2022) ‘Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data’, NeuroImage, 255, p. 119213. Available at: https://doi.org/10.1016/j.neuroimage.2022.119213.