Skip to main content

Detail

Chrysoula Vraka
Dr.rer.nat. Chrysoula Vraka, MScSection Head of Radiopharmacy and Experimental Nuclear Medicine (Biolabs)

Department of Biomedical Imaging and Image-guided Therapy (Division of Nuclear Medicine)
Position: Research Associate (Postdoc)

ORCID: 0000-0003-2065-6093
T +43 1 40400 78350
chrysoula.vraka@meduniwien.ac.at

Further Information

Keywords

Drug Evaluation, Preclinical; Molecular Imaging; Neurosciences; Positron-Emission Tomography; Radioactive Tracers

Research interests

My main research focus is to understand the pharmacokinetic properties of radiotracers and drugs in order to accelerate and improve the process of drug development in neuroscience. Several radiotracers failed in later stages of drug development caused to poor blood brain barrier (BBB) penetration or interactions to efflux transporters, thus predictive DMPK (drug metabolism and pharmacokinetics) assessments gain in value to determine the most promising radiotracers before conducting animal experiments.

Techniques, methods & infrastructure

  • Radiolabeling and imaging (PET, PET/CT)
  • Drug development: in vitro techniques as lipophilicity, permeability, plasma protein binding, drug distribution and  metabolism, cell culture (co-culture models and real-time kinetic assays), binding studies, autoradiography and ex vivo metabolism and biodistribution studies.

Selected publications

  1. Vraka, C. et al., 2017. Log P , a yesterday�s value? Nuclear Medicine and Biology, 50, pp.1-10. Available at: http://dx.doi.org/10.1016/j.nucmedbio.2017.03.003.
  2. Vraka, C. et al., 2018. Expanding LogP: Present possibilities. Nuclear Medicine and Biology, 58, pp.20-32. Available at: http://dx.doi.org/10.1016/j.nucmedbio.2017.11.007.
  3. Vraka, C. et al., 2018. A new method measuring the interaction of radiotracers with the human P-glycoprotein (P-gp) transporter. Nuclear Medicine and Biology, 60, pp.29-36. Available at: http://dx.doi.org/10.1016/j.nucmedbio.2018.02.002.
  4. Wenzel, B. et al., 2016. Development of a Novel Nonpeptidic 18F-Labeled Radiotracer for in Vivo Imaging of Oxytocin Receptors with Positron Emission Tomography. Journal of Medicinal Chemistry, 59(5), pp.1800-1817. Available at: http://dx.doi.org/10.1021/acs.jmedchem.5b01080.
  5. Hahn, A. et al., 2016. Quantification of Task-Specific Glucose Metabolism with Constant Infusion of 18F-FDG. Journal of Nuclear Medicine, 57(12), pp.1933-1940. Available at: http://dx.doi.org/10.2967/jnumed.116.176156.