Skip to main content


Chrysoula Vraka
Dr.rer.nat. Chrysoula Vraka, MScPostdoctoral researcher (postdoc)

Department of Biomedical Imaging and Image-guided Therapy (Division of Nuclear Medicine)
Position: Research Associate (Postdoc)

ORCID: 0000-0003-2065-6093
T +43 1 40400 55450

Further Information


Drug Evaluation, Preclinical; Molecular Imaging; Neurosciences; Positron-Emission Tomography; Radioactive Tracers

Research interests

My main research focus is to understand the pharmacokinetic properties of radiotracers and drugs in order to accelerate and improve the process of drug development in neuroscience. Several radiotracers failed in later stages of drug development caused to poor blood brain barrier (BBB) penetration or interactions to efflux transporters, thus predictive DMPK (drug metabolism and pharmacokinetics) assessments gain in value to determine the most promising radiotracers before conducting animal experiments. Furthermore, my academic work include radio-metabolite analysis in vivo, ex vivo for kinetic modeling in human and animal studies.

With this background, the future work will encompass whole body tracer pharmacokinetics and imaging with special focus on organ axes.

Techniques, methods & infrastructure

  • Radiolabeling (PET, SPECT, Therapeutics)
  • Drug development: in vitro techniques as lipophilicity, permeability, plasma protein binding, drug distribution and  metabolism, cell culture (co-culture models and real-time kinetic assays), binding studies, autoradiography and ex vivo & in vitro metabolism and biodistribution studies.
  • In vivo radio-metabolite analysis for kinetic modeling (human studies)
  • Preclinical Imaging µPET/µCT
  • Imaging Organ-Axis/organ-crosstalk

Selected publications

  1. Vraka, C. et al., 2017. Log P , a yesterday’s value? Nuclear Medicine and Biology, 50, pp.1–10. Available at:
  2. Vraka, C. et al., 2018. Expanding LogP: Present possibilities. Nuclear Medicine and Biology, 58, pp.20-32. Available at:
  3. Vraka, C. et al., 2018. A new method measuring the interaction of radiotracers with the human P-glycoprotein (P-gp) transporter. Nuclear Medicine and Biology, 60, pp.29-36. Available at:
  4. Wenzel, B. et al., 2016. Development of a Novel Nonpeptidic 18F-Labeled Radiotracer for in Vivo Imaging of Oxytocin Receptors with Positron Emission Tomography. Journal of Medicinal Chemistry, 59(5), pp.1800-1817. Available at:
  5. Hahn, A. et al., 2016. Quantification of Task-Specific Glucose Metabolism with Constant Infusion of 18F-FDG. Journal of Nuclear Medicine, 57(12), pp.1933-1940. Available at: